Pseudogapping in Japanese
Hideharu Tanaka / Shintaro Hayashi
Mie University / Nanzan University

**Issue:** We explore the possibility of pseudogapping (PG) in Japanese. English PG is given in (1B), which is derived by movement of the remnant to the VP edge (Move-R) and VP ellipsis (VPE). Funakoshi (2016) establishes that Japanese allows verb-stranding VP ellipsis (VVPE), where V moves out of its elided VP, and argues that PG is also possible in Japanese. For instance, the second clause in (3a) can have the VP adjunct *jitensha-de* elided, while that in (3b) cannot. This difference follows if Japanese allows VVPE and if only the contrastive XP can be extracted from the elided VP, which is the case with English, as in (1B-2B). Thus, claiming that English and Japanese PG can be uniformly characterized as in (4), we address what differences or similarities they have.

**Data:** English and Japanese PG differ in whether Move-R can get across finite clauses (Fin-C), object control clauses (OC-C), and subject control clauses (SC-C). In English, Move-R is possible across SC-C, but not OC-C/Fin-C (Baltin 2000, Johnson 2008). In Japanese, Move-R is possible across SC-C/OC-C, but not Fin-C, as in (5).

**Claim:** We claim that this difference follows from a difference between English and Japanese Move-R; the former is overt Quantifier Raising (QR) (e.g., Johnson 2008), while the latter is scrambling. Thus, if English Move-R is QR, it can get across SC-C, but not OC-C/Fin-C, because QR behaves the same way (Baltin 2000, Johnson 2008). If Japanese Move-R is scrambling, it can bring the remnant to the matrix VP across SC-C/OC-C, but not Fin-C, because scrambling behaves the same way as in (6).

**Conclusion:** We have argued that English and Japanese PG only differ in the identity of Move-R. Given this, our study poses a challenge for Thoms’s (2016) analysis of English PG. He proposes that, while the remnant must move to TP-internal FocP, its correlate in the antecedent clause must also move to FocP by covert QR, as in (7). Thoms attributes QR of the correlate to scope parallelism (SP) in ellipsis, which requires that variables in the antecedent and elided clauses be bound from parallel positions. Thus, as for the impossibility of Move-R across Fin-C (8a), his analysis excludes it as a violation of SP, which is induced by the impossibility of QR of the correlate across Fin-C (8b). Then, if SP is universal, it should also regulate Japanese PG; in Japanese, too, the correlate should undergo covert QR to a parallel position. However, we argue that QR is irrelevant for Japanese PG. In the OC example (9), the embedded quantifier cannot outscope the matrix quantifier, suggesting that QR cannot bring the former to the matrix VP. Then it should be impossible to pseudogap an OC clause, because QR out of it is disallowed, inducing a violation of SP. The fact contrary to this prediction is already shown in (5b). Thus, Thoms’s SP is not universal, in the sense that it does not work for the analysis of Japanese PG.
(1) Speaker A: Is she suing the hospital?  Speaker A: Is she suing the hospital?  
Speaker B: She is suing the doctor.  Speaker B: * Yes, she is suing the hospital.  
(Halliday and Hassan 1973: 49)  (Lasnik 1995: 145)  

(2) John-wa  jitensha-de  Kyoto-ni-VA  it-ta-ga,  (3) John-wa  jitensha-de  Kyoto-ni-VA  it-ta-ga,  
John-Top  bicycle-by  Kyoto-Dat-Top  go-Past-though  (null adjunct)  
(4) John-Top  bicycle-by  Kyoto-Dat  go-Past-though  

(5) Tom-wa  (*jitensha-de)  Kyoto-ni  ika-nakat-ta.  (null adjunct)  
Tom-Top  Kyoto-Dat  go-Neg-Past  

(6) ‘John went to Kyoto by bicycle, but Tom didn’t go to Tokyo.’  

(7) a. PG in ENG = Move-R + VPE  b. PG in JPN = Move-R + VPE (+ V-Raising)  

(8) a. * Kathy thinks she should study French, but she doesn’t study German.  b. Someone thinks you should kiss everyone.  (‘∃ > ∀, *∀ > ∃)  
(Thoms 2016: 294, 7)  

(9) John Top  dareka-ni  dono-basyo-ni-mo  iku-yooni  tanon-da.  [OC-C]  
John-Top  someone-Dat  every-place-Dat-also  go-C  ask-Past  

‘John asked someone to go to every place.’  (‘∃ > ∀, *∀ > ∃)  