1. Synopsis Watanabe (2006) deals with the Japanese pseudo-partitive construction, and argue that the bracketed parts of the sentences in (1) are derived from the same underlying structure. This paper claims in both syntactic and semantic terms that (1c) is derived in a different way and the Measure Phrase (MP) kago-san-ko-bun in the floating position is base-generated in a VP-modifier position.

2. Counterarguments The structure Watanabe proposes for (1c) is (2), where the host-NP ball and the MP are contained in the same DP. (2) predicts that if the two phrases are coded separately, it involves some movement of one of them. (3) is a problematic case for (2), since the MP biikaa-san-ko-bun occurs outside the relative clause (bracketed in (3)), which is an island. On the other hand, if the measure phrase is base-generated in the sister position of the matrix verb, (3) is straightforwardly derived.

The claim that the floating measure phrase is a VP-modifier is supported also semantically. See (4), where the cardinality of the host NP ball is specified. The interpretation of (4a) is that Taro carried all the 600 balls whose amount is equivalent to the one measured by three baskets, while (4b) means that as for the 600 balls, Taro carried some of them whose amount is the one of three baskets, i.e., in (4b), Taro carried a some portion of the 600 balls with three baskets. This contrast can be explained by supposing that the non-floating MP in (4a) measures the amount of 600 balls, while the floating MP in (4b) measures the amount involved in the carrying event, and puts no influence on the 600 balls.

3. Proposal As in (5), MPs have two options as to where they are base-generated: DP-internally (A in (5)) or within VP (B in (5)). For the sake of simplicity of semantic types, we exploit Parson’s style event semantics, where a verb is a set of events (i.e. of type \(\langle v, t \rangle \)).

Our proposal of MPs is based on Nakanishi’s analysis of Floating Numeral Quantifiers (FNQs). See (6). An MP takes a predicate of type \(\langle \sigma, t \rangle \), where \(\sigma \) is a flexible type, which enables an MP to take NP (type \(\langle e, t \rangle \)) and V (type \(\langle v, t \rangle \)). The homomorphism \(h \) maps an individual or event to an individual relevant to it (i.e. if \(h \) takes an individual, it works as an identity function). (7a) and (7b) are the results of MPs combining with NPs and V, respectively. (7b) means that the amount of individuals relevant to the ball-carrying event equals to the amount measured by three baskets, the interpretation of the floating MP in (4b).

Nakanishi proposes that an FNQ must be c-commanded by its host NP, in order to be associated with it. In (3), however, the host NP ekitai does not c-command the MP. Instead of the c-command requirement, we propose (8) as the semantic requirement for association of an MP and its host.
(1) a. \textit{Taro-wa [kago-san-ko-bun-no \ boru-o] hakonda.}
\textit{Taro-Top basket-three-Cl-amount-Gen ball-Acc carried.}
b. \textit{Taro-wa [boru kago-san-ko-bun-o] hakonda.}
c. \textit{Taro-wa [boru-o kago-san-ko-bun] hakonda.}

\text{‘Taro carried three baskets of balls.’}

(2) \([\text{DP[CaseP ball-Acc]}, \ [\text{QP[\#P basket-three-Cl-bun}}] t_1 Q]D\]

(3) \textit{Rabo-de Taro-wa [ekitai-ga motu tokusei-o lab-in Taro-Top liquid-Nom have characteristics-Acc biikaa-san-ko-bun shirabeta. beaker-three-Cl-amount investigated}

\text{‘In the lab, Taro investigated characteristics of liquid contained in three beakers.’}

(4) a. \textit{Taro-wa kago-san-ko-bun-no 600-ko-no-boru-o hakonda.}
\textit{Taro-Top basket-three-Cl-amount-Gen 600-Cl-Gen-ball-Acc carried.}
b. \textit{Taro-wa 600-ko-no-boru-o kago-san-ko-bun hakonda.}

\text{‘(Lit.) Taro carried three baskets of 600 balls.’}

(5) \[\begin{array}{c}
\text{A} \\
\text{B} \\
\text{V} \\
\text{TP} \\
\text{VP} \\
\text{DP}
\end{array}\]

(6) \[\text{[kago-san-ko-bun]} = \lambda P_{\alpha}, \lambda a_{\alpha}. P(a) \land \text{AMOUNT}(h(a)) = \text{three baskets.}\]

(7) a. \[\text{[kago-san-ko-bun-no ball]} = \lambda x_{\epsilon}. \text{ball}'(x) \land \text{AMOUNT}(h(x)) = \text{three baskets}\]
b. \[\text{[kago-san-ko-bun hakonda]} = \lambda e_{\epsilon}. \text{carry}'(e) \land \text{AMOUNT}(h(e)) = \text{three baskets}\]

(8) An individual \textit{x} in an event \textit{e} can be measured by an MP iff if there is an event \textit{e'} such that \textit{e} < \textit{e'}, then there is an individual \textit{y} in \textit{e'} such that \textit{x} < \textit{y}.

\textbf{References}